

Wisconsin State Laboratory of Hygiene UNIVERSITY OF WISCONSIN-MADISON

Mycobacterium tuberculosis Case Study

Aliberkys Benso (Lopez) M.S Microbiologist WSLH

Coming up next...

- 1. Background on the patient
- 2. Patient's M. tuberculosis infection chronology
- 3. Treatment and follow up testing
- 4. Ana Guaracao Ph.D summer study
- 5. Significance of evaluating *M. tuberculosis* cell viability
- 6. Review of new assays on development to assess *M. tuberculosis* cell viability

Background on the patient

Age: 58 yrs Father : Native American-Alaskan Mother : Caucasian

Life style:

• Vietnam veteran

Demographics:

- Heavy smoker
- Recovering Alcoholic
- Previous use of Cocaine
- Hobbies: Native American rituals Motorcycle riding
- Lives with mother and brother

Medical history

- Post Traumatic stress disorder
- Hepatitis C
- Sinusitis
- Ankylosing spondylitis

From Motorcycle Accident to TB infection

September 23, 2004: - Admitted to the hospital as presumptive TB pt

Treatment and Follow up Testing

1st line drugs -IIRE and PZA

September 23 - 1st week of April

<u>6 sputum collected</u> 5 smear negative 1 smear positive 1 culture positive

2010 Diagnosed *M. avium complex*

Follow up Testing

Speci mens	DOC	SMR	TB/MAC PCR	MGIT +	TB/MAC PCR (from MGIT)	CULTURE
1	4/4/2015	+ Few AFB	TB CT=34.30 MAC CT=31.45	-	TB CT=0	TB NEGT
2	4/9/2015	1-9/10 F	-	4/17/15	TB CT=0 MAC CT=0	MAC POST
3	4/13/2015	>9/ F	-	4/15/15	TB CT=0 MAC CT=24.01	MAC POST
4	4/14/2015	>9/ F	-	4/21/15	TB CT=0 MAC CT= 24.88	MAC POST
5	5/2/2015	1-9/100 F	-	5/14/15	TB CT= 0 MAC CT= 27.98	MAC POST
6	5/3/2015	>9/F	-	5/11/15	TB CT =0 MAC CT= 26.90	MAC POST
7	5/4/2015	>9/F	-	5/10/15	TB CT= 38.14 MAC CT=25.68	MAC POST
8	7/28/2015	>9/ F	-	8/6/15	TB CT=40.33 MAC CT=29.16	MAC POST
9	7/29/2015	>9/F	-	8/6/15	TB CT= 40.66 MAC CT=29.07	MAC POST

Follow up Testing

Specimens	DOC	SMR	TB/MAC PCR	MGIT +	TB/MAC PCR (from MGIT)	CULTURE
10	6/24/2016	>9/F	TB CT= 29.39 MAC CT =31.00	7/2/16	TB CT= 0 MAC CT=29.22	MAC POST
11	6/25/2016	>9/F	TB CT= 34.82 MAC CT= 33.11	7/3/16	TB CT=0 MAC CT= 29.46	MAC POST
12	6/26/2016	1-9/F	-	7/3/16	TB CT=0 MAC CT=29.60	MAC POST
13	7/28/2016	1-9/F	-	8/7/16	TB CT= 39.28 MAC CT=26.69	MAC POST
14	7/29/2016	1-9/F	-	8/7/16	TB CT=0 MAC CT=26.75	MAC POST
15	7/30/2016	1-9/F	-	8/5/16	TB CT=0 MAC CT =0	MAC POST

Using PCR CT values to predict viability Ana Guaracao Ph.D

Senior microbiologist at WSLH

	1 st TB PCR	Days between PCRs	2 nd TB PCR
Average for 31 Positive TB cultures	Ct=25.18	19	Ct= 18.6
Average for 5 Negative TB cultures	Ct=37.2	25	Ct= 28.38
Average for 36 total cultures	Ct=26.85	20	Ct= 19.95

- ✓ Decrease in Ct values between 1st and 2nd PCR are not indicative of viable *M. tuberculosis*.
- ✓ Include more specimens for more statistically significant data.

✓ Continue this study including <u>Follow- Up</u> specimens to compare CT values from before and after commencing treatment.

Significance of Evaluating *M. tuberculosis* Viability

1. Assessing treatment response

2. Minimize toxicity

3. Prevent development of drug resistanc

Ongoing Research on Cell Viability Assay Development

- 1. M. tuberculosis Viability by PMA Real-Time PCR
- 2. *M. tuberculosis* Viability by Microscopy (Fluorescein Diacetate (FDA)
- 3. Assessing *M. tuberculosis* viability by Flow Cytometry
- 4. Nile-Red labeled Auramine-O staining smear

M. tuberculosis Viability by PMA **Real-Time PCR** Modified DNA non-amplifiable by PCR PMA™/Light **qPCR**

Advantages

- Comparable with NALC-NaOH
- Used in primary specimens

Disadvantage

- Cells with compromised membrane integrity

M. tuberculosis Viability by Microscopy

Advantages

- Does not require sophisticated laboratory infrastructure
- Used as early indicator of poor treatment response
- Permits early identification of drug resistance

Disadvantage

- Only useful to assess sputum from smear positive pulmonary TB pt
- Requires trained lab personal
- Does not identifies the cause of treatment failure

Assessing *M. tuberculosis* viability by Flow Cytometry

Charlotte Louise Hendon-Dunn et al. Antimicrob. Agents Chemother. 2016;60:3869-3883

Auramine labeled Nile-Red staining smear

M. tuberculosis In vitro studies show :

- MTB becomes persistent
- Metabolic downregulation
- Stops replication
- Decrease ATP production
- Shifts energy from carbohydrates to fatty acids

Tuberculosis 2015 95, 770-779DOI: (10.1016/j.tube.2015.08.001)

References

Datta S, Sherman JM, Bravard MA, et al. **Clinical evaluation of tuberculosis viability microscopy for assessing treatment response**. Clin Infect Dis. 2015;60(8):1186–1195.

Hendon-Dunn, Charlotte Louise et al. A Flow Cytometry Method for Rapidly Assessing Mycobacterium Tuberculosis Responses to Antibiotics with Different Modes of Action. Antimicrobial Agents and Chemotherapy 60.7 (2016): 3869–3883. PMC. Web. 10 Nov. 2016.

Kim YJ, Lee SM, Park BK, et al. **Evaluation of propidium monoazide real-time PCR for early detection of viable Mycobacterium tuberculosis in clinical respiratory specimens**. Ann Lab Med. 2014;34 (3):203–209.

Kayigire XA, Friedrich SO, van der Merwe L, et al. **Simultaneous staining of sputum smears for acid-fast and lipid-containing Myobacterium tuberculosis can enhance the clinical evaluation of antituberculosis treatments.** Tuberculosis (Edinb). 2015;95:770–779.

S. Kanade et al. **Fluorescein diacetate vital staining for detecting viability of acid-fast bacilli in patients on anti-tuberculosis treatment.** Int. J. Mycobacteriol. (2016), http://dx.doi.org/10.1016/j.ijmyco.2016.06.003