

Influenza and other Respiratory Viruses Update--2019

Pete Shult, PhD

CDD Director & Emergency Laboratory Response

and

Erik Reisdorf, MPH, M(ASCP)^{CM}

Surveillance and Virology Lab-Team Lead

Learning Objectives

- Review of influenza basics.
- Review of the 2018-2019 influenza season.
- Influenza vaccine updates.
- Review the impact of the FDA reclassification in Wisconsin.
- Describe why specimens and testing data is vital for public health programs.
- Discuss surveillance strategy for 2019-2020.

Influenza The latest information

www.cdc.gov/flu/index.htm

- Influenza types A, B, C and D
 - A and B are major human pathogens
- Negative-sense segmented RNA genome
 - 10 major proteins
- Two major surface proteins of A and B viruses: Hemagglutinin (HA) and Neuraminidase (NA)
 - Nomenclature
 - Role in pathogenesis
 - Defines subtypes

The Changeability of Influenza Antigenic Drift → Seasonal Influenza

Antigenic Drift

Manifests in HA and NA as a result of continuous and gradual accumulation of point mutations in the HA and NA genes within a subtype

Estimated Influenza Disease Burden, by Season United States, 2010-11 through 2017-18 Influenza Seasons

In a given season, 5-20% of community may experience illness https://www.cdc.gov/flu/about/burden/index.html

Historically

Severe

Year!

FIGURE 3. Influenza season severity classification,* by age group and season — United States, 2003-04 through 2017-18 seasons†

Influenza season

MMWR June 8, 2018, Vol. 67/No.22

^{*}CDC began using a new method in 2017 to classify influenza season severity using three indicators: the percentage of visits to outpatient clinics for influenza-like illness (ILI) from ILINet, the rates of influenza-associated hospitalizations from FluSurv-Net, and the percentage of deaths resulting from pneumonia or influenza from the National Center for Health Statistics. This method was applied retrospectively, going back to the 2003–04 influenza season. https://www.cdc.gov/flu/professionals/classifies-flu-severity.htm.

^{*} As of June 1, 2018.

U.S. Influenza Surveillance

www.cdc.gov/flu/weekly/overview.htm

Influenza Virologic Surveillance

How we monitor the virus

- Provide situational awareness
 - Clinical lab testing data

Via PHL or directly

Detect novel or reassortant viruses

- Inform vaccine strain selection
 Detect and monitor antiviral resistance
 - Specimens/isolates → PHL → NIRC→ CDC from clinical labs

The 2018-19 Influenza Epidemic Key Virologic and Epidemiologic Indicators

NOTE: This is the last week in-season burden estimates will be provided. CDCs active surveillance for laboratory-confirmed hospitalizations for the 2018-2019 season concluded on April 30, 2018.

Influenza — Prevention and Treatment http://www.cdc.gov/flu/professionals/index.htm

Seasonal Influenza

Antivirals

- Adamantanes (Amantadine & Rimantadine)
 - No longer effective against influenza type A,
- Neuraminidase inhibitors
 [Tamiflu & Zanamivir; Peramivir(i.v.)]
 - Effective against influenza subtypes A and B
 - Both oral, inhalant and i.v. preparations available
 - Differ in age ranges, routes of administration, costs, and adverse events
 - Development of complete resistance by former seasonal H1N1; pdmH1N1 and H3N2 remains susceptible
- Baloxavir marboxil

Seasonal Influenza

Vaccine

- Primary strategy to reduce influenza infections and their complications
 - Safe and effective(?); usage rates disappointing
- 2 options:
 - Inactivated influenza vaccine
 - Trivalent and quadrivalent
 - Egg or cell culture grown
 - For all age groups ≥ 6 months (Universal)
 - Options now include high potency and adjuvanted
 - Live attenuated influenza vaccine
 - Licensed for non-pregnant persons aged 2-49 years
- Vaccine is matched to circulating strains of seasonal types A (2 subtypes) and B (2 lineages) influenza

Influenza 2018-19

What was expected...

- A/Singapore/INFMH-16-0019/2016 A(H3N2)-like
- A/Michigan/45/2015 A(H1N1)pdm09-like
- B/Phuket/3073/2013-like (B/Yamagata-lineage)
- B/Colorado/06/2017-like (B/Victoria-lineage)

... but a different H3N2 virus snuck in to give our late season H3N2 peak ...

Influenza Vaccine 2019-20

- A/Kansas/14/2017 A(H3N2)-like
- A/Brisbane/02/2018 A(H1N1)pdm09-like
- B/Phuket/3073/2013-like (B/Yamagata-lineage)
- B/Colorado/06/2017-like (B/Victoria-lineage)

Seasonal Influenza Vaccines

How effective?

http://www.cdc.gov/flu/professionals/vaccination/ effectiveness-studies.htm

Seasonal Flu Vaccine Effectiveness

Median 40%

Flu Season

Data Table -											
	2004-05	2005-06	2006-07	2007-08	2008-09	200	9-10	2010-11	2011-12	2012-13	2013-1
Adj. Overall VE (%)	10	21	52	37	41		56	60	47	49	
* III							+				

However:

- Prevents office visits
- Prevent hospitalization
- · Prevents death

Scroll for additional info

VE= percent reduction of frequency of flu among vaccinated people compared to unvaccinated people

Early-season and end-of-season flu vaccination coverage estimates, National Immunization Survey-Flu and National Internet Flu Survey, United States, 2013–14 flu season to November, 2017

nic

1918 Influenza Pandemic 100 Year Anniversary of the Great Pandemic

https://www.cdc.gov/flu/pandemic-resources/index.htm

Influenza at the Human-Animal Interface

Influenza A

- H1 H16*
- N1 N9*

*Bats - H17/18, N10/11

www.cdc.gov/flu

Antigenic "shift"

- **Associated with pandemics** Acquisition of novel genes through reassortment Appearance of novel influenza A viruses bearing
- new HA or HA & NA H5N1 in Asia
- 2009 H1N1

Replication in Humans

Efficient and sustained human-to-human transmission

Pandemic Influenza

Novel Influenza Infection Reports are Increasing

Human Cases of Reported Novel Influenza A Infection, 1959-2017 Includes Avian H4, H5, H6, H7, H9, H10 & Swine H1, H3 (not H1N1pdm09)

Year of Onset 1959 to 2017

>30 fold increase from 1990's to 2000's

Defining Event in 2003 Concerns with Pandemic Influenza

Current zoonotic influenza situation A(H5N1)

The emergence of Influenza A H5N1

Influenza A H7N9 The latest global concern

~ 1600 cases over 5 seasons

Pandemic Influenza:

Public Health's Ongoing Concern

The recipe:

- Novel influenza A subtype emerges in humans
- Virus causes disease in humans
- Easily transmitted human-to-human

- · A global public health tool to prioritize pandemic preparedness activities
 - Evaluates risk from novel viruses currently circulating in animals, i.e. in pre-pandemic period
- Assess potential pandemic risk for:
 - Emergence of a novel influenza virus in humans
 - Human-to-human transmission
 - Public health impact
 - Severity
- The IRAT can prioritize readiness activities
 - Diagnostics, reagents, vaccines and antivirals development
 - Stockpiling and deployment
- The IRAT cannot predict the next pandemic strain

CDC. https://www.cdc.gov/flu/pandemic-resources/monitoring/irat.htm

A Global Tool for Pandemic **Preparedness**

Updates on Lab Testing: RIDT

Impact of the FDA Reclassification of RIDTs in WI

- The WSLH collects detailed clinical laboratory testing information on the specimen submission forms that accompany specimens submitted.
- The WSLH RT-PCR results were compared to those provided by the clinical laboratories to assess the "real world" performance characteristics at multiple clinical laboratories pre and post FDA reclassification.

Reclassification Impact

- *Decreasing* the number of RIDTs that were used to primarily two manufacturers.
- The overall performance of the RIDTs assessed by the percent discordant results trended lower, but remained near 10% over the four influenza seasons that were analyzed (pre and post reclassification).
- *Highest* discordant rate from the past three influenza seasons was a rapid molecular assay
- The number of RIDTs performed are similar from year to year.

Severe Adenovirus

- Adenovirus outbreak occurred in NJ
 - >24 severe illnesses and 11 deaths
 - Children with compromised immune systems
- University of Maryland
 - Freshman death
- University of Wisconsin

Wisconsin

 Bi-weekly Laboratory Surveillance Report

Subscribe at: wcln@slh.wisc.edu

Virus Activity Graphs

http://www.slh.wisc.edu/wcln-surveillance/surveillance/virology-surveillance/

National

- FluView (CDC)
- NREVSS (CDC)

Flu Near You!

- Joint research venture.
- Utilizes crowdsourcing data to compile estimates.
- Based on symptom self reporting online
- Anyone can report!

Influenza and non-influenza virus respiratory surveillance

Early..... Influenza season, 2019-2020

% Positive for Influenza by PCR (Wisconsin), Week Ending September 21, 2019

Early..... Influenza season, 2019-2020

WHO Global Influenza Surveillance and Response System (GISRS)—

Southern hemisphere, 2019

Number of specimens positive for influenza by subtype

Influenza Severity, Southern Hemisphere

- Clinical severity was low.
- The number of deaths was low.
- VE was expected to be 40-60%

Data source: Dept. of Health, Australia https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda-surveil-ozflu-flucurr.htm#current

If you have seen one influenza season! you have seen one influenza season!

Graphs: Lynette Brammer, CDC

 $H1N1 pdmo9 \rightarrow H3N2$

What do we do with the specimens

submitted?

- Subtype characterization
- Whole genome sequencing
 - 3c.2a, 3c.2a1, 3c.3a
- Provide specimen/ isolates to CDC
- Provide weekly summaries
- Antiviral resistance testing

Respiratory Pathogen Surveillance

2019-2020 Season

Influenza Surveillance in Wisconsin

<u>Multi-element approach</u>

- Rapid Influenza Diagnostic Testing (RIDT) Sites
 - Now ~50% of influenza testing in WI
 - Confirmatory testing during periods of low prevalence (June to November).
 - Please notify WSLH of suspected performance issues (e.g. False positives/negatives)

WSLH can provide confirmatory testing for the <u>first positive influenza specimen</u> of the season.

<u>Multi-element approach</u>

- 2. Enrolled Surveillance Sites
 - 17 labs in 5 public health regions.
 - Provide randomized specimens weekly.
 - Provided a "blue" specimen submission form.

Request to continue to submit the <u>first 1-2 specimens per week</u> with influenza test requests to WSLH.

Influenza Surveillance in Wisconsin

Multi-element approach

- 3. PCR Labs
 - "Gold Standard" testing.
 - Provide weekly testing data summary reports.
 - Do NOT need to send positive specimens.

Request to report both the <u>number positive</u> and the <u>number tested</u> weekly.

**Send Flu A unsubtypable specimens when subtyping for both 2009 H1N1 and seasonal H3 were attempted (Ct<35).

Influenza Surveillance in Wisconsin

Multi-element approach

- 4. University Health Clinics
 - Concern with severe adenovirus infections.
 - Monitor and type adenoviruses impacting student health.

Request to <u>up to 3 specimens per week</u> for respiratory pathogen testing and characterization.

Laboratory-based Surveillance

All Clinical Laboratories performing influenza diagnostic testing

All Labs:

- •Send those with international travel histories
- •<u>Up to one</u> influenza-related hospitalization per week
- Unusual presentations/results
- •Contact with swine/ sick or dead poultry
- Antiviral treatment failure

NRVESS Reporting

NREVSS was created in the 1980s to monitor seasonal trends in influenza and respiratory syncytial virus (RSV). In 2007, data collection for rhinovirus, enterovirus, and human metapneumovirus began.

https://www.cdc.gov/surveillance/nrevss/index.html

- It is no longer necessary for labs to report testing data to the National Respiratory and Enteric Virus Surveillance System (NRVESS).
- The WSLH is now reporting this data electronically to NREVSS for all labs in Wisconsin that report to WSLH.

Summary of Surveillance Activities

RIDT Sites

• Confirm the <u>first</u> influenza positive specimen if needed.

Hospitalized Patients

Limit to one specimen per week

Enrolled Regional Surveillance Sites

Send the first 1 to 2 specimens/week

Student Health

3 specimen/week

All labs: Please continue to send all out-of-season positive influenza A specimens (e.g. June-September).

Your participation in the Wisconsin surveillance system is **vital** to monitor for emerging novel strains with pandemic potential and other pathogens that impact community health.

WSLH Surveillance Coordinators

Erik Reisdorf Virology Lab-Team Lead erik.reisdorf@slh.wisc.edu

> Mary Wedig Electronic Reporting Coordinator mary.wedig@slh.wisc.edu

P: 1-800-862-1013